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A b s t r a c t .  The theoretical  foundat ion of integral global optimizat ion has become widely known 
and  well accepted [4],[24],[25]. However, more effort is needed to demonstra te  the effectiveness 
of the integral global optimizat ion algorithms. In this work we detM1 the implementat ion of 
the integral global minimizat ion algorithms. We describe how the integral global opt imizat ion 
me thod  handles nonconvex unconstra ined or box constrained, constrained or discrete minimizat ion 
problems. We il lustrate the flexibility and  the efficiency of integral  global opt imizat ion me thod  
by presenting the performance of algorithms on a collection of well known test problems in global 
optimizat ion li terature.  We provide the software which solves these test  problems and other  
minimizat ion problems. The performance of the computat ions demonstrates  tha t  the integral 
global algorithms are not only extremely flexible and  reliable bu t  also very efficient. 

K e y w o r d s :  Integral  global minimization,  Monte Carlo implementat ion,  test  problems, discon- 
tinuous penal ty  method,  robustificatlon 

1. I n t r o d u c t i o n  

Let X be a topological space, f : X ---+ R 1 a function and S a subset of X. The 
problem considered here is to find the infimum of f over S 

c* = inf  f(x) 
xES 

and the set of global minimizers 

( i) 

H* = {x e S: f(x) = c*}, (2) 

if H* is nonempty. 
Most of the conventional optimization theory and methods are gradient-based. 

They can only be applied to characterize and to find a local minimizer of an objec- 
tive function. The gradient based iterative algorithms, which are easy to implement,  
usually have higher convergence rates. The gradient-based theory and methods are 
the main s t ream of the research in optimization. However, in many  applications, it 
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is often more desirable to find a global minimizer than to find a local one, especially 
when we deal with a nonconvex optimization problem. 

An integral approach of global optimization has been developed to deal with non- 
convex minimization problems of a class of discontinuous objective functions (see 
[4], [30], [31]). Integral global optimization algorithms are implemented by prop- 
erly designed Monte-Carlo techniques. In this work we describe the techniques of 
the implementations of the algorithms. We also present the performance of the 
algorithms on a collection of well known test problems. A companion diskette 
containing all the software necessary for solving unconstrained or constrained mini- 
mization problems presented in this paper on an MS-DOS environment is available 
upon the request to the authors. 

The following is the organization of the paper. In Section 2, we describe briefly 
the main ideas of the integral global optimization theory. Section 3 is devoted 
to the detailed explanation of the implementation of integral global minimization 
algorithms for simple unconstrained models. Some statistical analysis of the im- 
plementation is also presented in Section 3. More implementation techniques are 
discussed in Section 4. In Section 5, we consider constrained and discrete or mixed 
problems. A collection of test problems from global optimization literature are 
solved by the integral global minimization algorithm in Section 6. 

2. Integral Global Optimization 

We summarize the main ideas of the integral global minimization theory. 
reader is referred to [4], [30], [31] for details. 

Optimality C o n d i t i o n s .  
Recall that a set D in a topological space X is robust iff 

The 

c l D = c l i n t D .  

A function f : X --+ R 1 is upper robust over S iff the set 

(3) 

Fc = {x z s :  f (x )  < c} (4) 

is robust for each real number c. Upper robustness of a function generalizes the 
concepte of continuity of a function. Based on such a generalization, a unified 
approach to continuous, discrete and mixed minimization problems, integral global 
optimization, is established. 

For the problem (1) under the assumptions that f is lower semicontinuous and 
upper robust; (X, ~, it) is a Q-measure space (the measure # have a property that 
the measure of a nonempty open set is positive); S C X is robust and there is a 
real number b such that {z E S : f (z )  < b} is compact, the following statements 
are equivalent: 

1. A point z* E S is a global minimizer and c* = f(z*) is the corresponding global 
minimum value; 
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. 

3. 

where 

M(f,  c; S) - I~(H, n S) ons 

and 

M(f,  c*; S) = c* (mean value condition); 

V1 (f ,  c*; S) = 0 (modified variance condition), 

f(x)d# (5) 

Vl(f, c; X) - #(Hc A S) (f(x) - c)2dp (6) 
a 

are the mean value and modified variance, respectively, of f over its level set 

g c  = {x:  f(x) <_ c}. (7) 

T h e  A l g o r i t h m .  

S t e p l  : Take c 0 > c *  and e > 0; k := 0; 

S t e p  2 : Ca+l : = M ( f ,  ck;S); vk+l := Vl(f, ck;S); Hk+INS:= {x E S : f ( x )  <_ 
Ck+l}; 

S t e p  3 : If  vk+i _> e then k := k + l; go to Step 2; 

S t e p  4 : c* 4== Ck+l; H* 4== Hck+l N S; Stop. 

If  we take e = 0, then we obtain two monotone sequences: 

co > c l  > . . .  > > c k + l  > . . .  ( 8 )  

and 

Let 

Hc o ClS D H~, r"l S D "'" D Hr ClS D H~k+, C'IS D ' " .  (9) 

then c* is the global min imum value of f over S and H* is the set of global mini- 
mizers. 

From the above algorithm, we realize that  the integral method for finding global 
minimizers requires the computat ion of a sequence of mean values and modified 
variances, and a sequence of level sets. Finding a mean value and modified vari- 
ance are equivalent to computing integrals of a function of several variables; the 
determination of a level set is, in general, more involved. This suggests that  a 

c * =  lim ck and H*= 5 H c k N S '  (10) 
k---+ oo 

k : l  
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Monte-Carlo based technique for finding global minimizers is appropriate. The er- 
ror of integration by the Monte Carlo method is proportional to cr/xfi, where t is 
the number of samples and r 2 is the variance of sample distribution. Note that  the 
accuracy at early steps of the algorithm is not generally required, since ~2 will tend 
to zero as the mean value goes to the global minimum value (the modified variance 
condition), the Monte Carlo approximation will become more accurate near the 
global minimum value even though the number t of random samples is not very 
large. 

In next section, we will discuss the Monte Carlo implementation of the algorithme. 

3. M o n t e - C a r l o  I m p l e m e n t a t i o n  o f  a S i m p l e  M o d e l  

Let us first consider a simple model of a global minimization problem. Suppose 
that the constraint set D is a cuboid in R ~, 

D = { x : a  i <_ x i <_ b i ,  i =  1,...,n} (11) 

and the objective function f is a lower semicontinuous and upper robust function 
with a unique global minimizer x* E D. In other words, for a decreasing sequence 
{ck} which converges to the global minimum value c*, the size of the level sets 
satisfies: 

Pk = P(H~k) = m a x  - yll --+ 0 a s  k - +  oo .  ( 1 2 )  
x , Y E H c  k 

We then have 

c* = m i ~ f ( x  ) = min S(x) = rain S(x), (13) 
x E H c  k n D  x E D k  

where Dk is the smallest cuboid containing the level set He k N D. 
Instead of computing M(f, ck; D) and V1 (f, c~ ; D) in the algorithm in the previous 

section, we compute M(f, ck;Dk) and V1 (f, ck;Dk) at each iteration. The following 
is an algorithm for this model: 

S t e p  1 : Take co > min,  eD f(x). Let Do = D be an initial cuboid. Set k = 0. 

S t e p  2 : Compute the mean value 

1 /H f(x)dp, c~+1 = M(I, ck; DI:) - #(Hck A Dk) cknDk 

where Dk be the smallest closed cuboid containing the level set He k = { x : 

f ( x )  < }. 
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Step  3 : Compute the modified variance 

1 /H ( f (x )  -- ck)2dp. 

S t e p 4  : I fv f  > e ,  set k : = k + l ,  and go to Step 2; otherwise, go to Step 5. 

S tep  5 : Let c* r ck+l and H* r Hck+l. Stop. 

At each iteration, we try to find Dk instead of level set Hck, where 

Dk = {x:aik < x i < b~ i =  l . . . . .  n}~ 

i = m i n { x i : ( x l  ' x n) E Hc~}, a k . . .  ~ x ~ , . . .  

b~ = max{xi :  ( x l , . . . , x ~ , . . . , z  ~) E H~}.  

Let e = 0. The above algorithm produces a sequence of level constants {ck} and 
a sequence of cuboid {Dk}. 

LEMMA 1 For the foregoing simple model, 

O 0  

{x*} = r ]  Ok, (14) 
k = l  

where x* is the unique global minimizer of the minimization problem. 

Proof .  By the definitions of the level set H ~  and Dk, x* E H ~  N Dk, for each 
k. We have 

x* C 5 ( H~k N Dk ) C 5 Dk . 
k=l  k = l  

It follows from (12) and the construction of Dk, the diameter of Dk approaches to 
0. The Cantor theorem [2] applies. [] 

3.1. M o n t e  Car lo  I m p l e m e n t a t i o n  

The implementation of the simple model can be described as follows: 
1. A p p r o x i m a t i o n  of  Hco a n d  M ( f ,  co; D): 
Let ~ = ( ~ 1 , . . . , ~ )  be an independent n-multiple random number which is uni- 

formly distributed on [0, 1] ~. Let 

x i = a i + ( b  i _ e l ) .  ~ i  i = 1 , . . . ,  n .  (15) 

Then x = ( x l , . . . ,  x n) is uniformly distributed on D. 
Take km samples and evaluate function values f ( x j ) ,  j = 1, 2 , . . . ,  kin, at these 

sample points. Comparing the values of the function f at these points, we obtain a 
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set W of sample points corresponding to the t smallest function values: FV[j],  j = 
1, 2 , . . . , t ,  ordered by their values, i.e., 

FV[1] > FV[2] > . . .  > FV[t]. (16) 

The set W is called an acceptance set which can be regarded as an approximation 
to the level set He0, where co = FV[1] is the largest value of {FV[j]} .  The positive 
integer t is called the statistical index. It is clear that f ( x )  ~_ co for all x C W. 
Also, the mean value of f over the level set Hc 0 can be approximated by the mean 
value of {FV[j]}:  

cl = M ( f ,  co; D) ~ (FV[1] + . . .  + FV[t]) / t .  (17) 

2. G e n e r a t i n g  a new  c u b o i d  by  W: 
The new cuboid domain of dimension n 

D1 = {x = ( x l , . . . , x n )  : a~ ~_ x i < b~, i = 1 , . . . , n }  (18) 

can be generated by the following procedure. Suppose that the random samples in 
W are vl, �9 �9 �9 ~ v,~. Let 

(r~ = min( r~ , . . . ,v~)  and (r~ = max(r~ , . . . ,v~) ,  i = 1 , . . . , n ,  (19) 

where vj = ( v ] , . . . , v ~ ) ,  j = 1 , . . . , t .  We use 

a i _: (rio (r~l -- (r~o and b i i (r~l - (r~o (20) 
t - 1  = ( r l +  t _----L-- ~ 

as estimators to generate a] and b~, i = 1 , . . . , n .  
3. C o n t i n u i n g  t h e  i t e r a t i v e  process :  
The samples are now taken in the new domain D1. Take a random sample point 

x = ( x l , . . . , x  ~) in D1, where 

x i --= a~ + (b~ - a~)-~i,  i = 1 , . . . ,  n. (21) 

Evaluate f ( x ) .  If f (x )  ~ FV[1], then drop this sample point; otherwise, update the 
sets {FV[j]}  and W such that the new {FV[j]} is made up of the t best function 
values obtained so far. The acceptance set W is updated accordingly. Repeating 
this procedure until FV[1] _~ cl, we obtain, new F V  and W. 

4. I t e r a t i v e  so lu t ion :  
At each iteration, the smallest value FV[t] in the set {FV[j]}  and the correspond- 

ing point in W can be regarded as an iterative solution. 
5. C o n v e r g e n c e  c r i t e r i on :  
The modified variance v/ of {FV[j]}, which is given by 

t 

1 E ( F V [ j  ] _  FV[1])~, (22) v / - t  - 1  
j=2 

can be regarded as an approximation of V1 (f, ck; Dk) at each iteration. If v/ is less 
than the given precision e, then the iterative process terminates, and the current 
iteration in Step 4 would serve as an estimate of the global minimum value and the 
global minimizer. 
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4. M o r e  T e c h n i q u e s  on  I m p l e m e n t a t i o n  

4.1. A d a p t i v e  C h a n g e  o f  S e a r c h  Se t s  

Consider a minimization problem 

The adaptive change of search sets technique allows an initial choice of a com- 
putat ionally manageable set So and then during the iteration process moves on 
to bet ter  performing sets Sk while still holding down their "size." The idea of 
this technique is to make a more perceptive use of the information generated from 
previous iterations to reduce the size of search sets. 

Let co be a real number and S0 be an initial compact robust search set where 
a(H~o n s )  > 0. Let 

1 f/~ S(x)d~. cl = M(f ,  c0; So) - #(gco N S) cons 

Then co > c1 > c* = minxes f(x). Take a robust set $1 C S such that  So N H~ 1 C 
$1, which implies that  So N He 1 C $1 N He1. 

Furthermore, we have 

p(S1 n H~I) > , (S0 n g~l )  > 0, (23) 

where #(S0 N Hr > 0 because #(S0 N Hr > 0. Let c2 = M(f ,  c~; St). 
In general, we require a set Sk+l be such that  

Sk-1 N H ~  C Sk, k = 1 , 2 , . . . ,  (24) 

and let Ck+l = M(f ,  ck; Sk), k = 0, 1, 2 , . . . .  In this manner  we have constructed a 
sequence of robust search sets and obtain the following two sequences : 

c0_> cl _> . . ._> ck _> ck+l >_ .- .  (25) 

and 

Heo D He1 D . . .  D Hek D Hek+l D - . . .  (26) 

Denote 
o o  

SL : U Sk and GL = cl SL. (27) 
k--1 

Sometimes the structures of sets oek, k = 0, 1, 2 , . . . ,  are complicated, and a further 
assumption is required: 

(SM) : #(SL) = #(cl SL). 
(3O 

Let c* = lim ck a n d H *  = lim H~k = N H ~ .  
k----1 
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THEOREM 1 Under the assumptions (.4), (M), and (SM), the limit e* is the global 
minimum value and H* nGL is the set of corresponding global minimizers o f f  over 
GL. 

Optimality conditions of our change-of-set model can also be given. Since the 
search sets are changed step by step, the optimality conditions are described in 
limit forms. Suppose that {ek} is a decreasing sequence which tends to c*, and 
{Sk} is a sequence of robust sets such that 

Sk C S  and SkAHck+l c S k + I ,  k = 0 , 1 , 2 , . . . .  (28) 

THEOREM 2 The following statements are equivalent: 

(i) e* is the global minimum value o f f  over GL; 

(ii) lira 1 f s  f ( x ) d #  = c*; 

(iii) lira 1 f s  ( f ( x )  - c*)2dl~ = O. 
~ - o o  ~(Sk n Hc~) ~nHc k 

A technique of reduction of the skew rate 

2x* - (a + b) 
(29) 5--  b - a  

was proposed to reduce the amount of computation. Thus, we can adopt the 
following change-of-set strategy: to move the search set in such directions so as to 
reduce the skew rate. 

Take three constant 5o >_ 0, 51 > 52 >_ 0. The skew rate 6 is considered not too 
large if ]51 < 50. In this case, the search domain need not be changed. If 5 > 50, 
then, we use 

elY = (1 + 515((1 - -  r and r = r + 525(r - r (30) 

as the estimators of the endpoint of the new search domain. Otherwise, if 5 < -50, 
the following will be used instead: 

r ---- r + 525(r - r and r = r -t- 515(r - -  r (31) 

The fact remains that the skew rate is unknown because we would otherwise 
need to know the global minimizers x* in advance. Suppose that  ~ is a random 
variable with probability density p(x) > 0 on [a,b] and ~I , . . . ,~N,  are samples 
of ~. Let ~N = minl<i<N f(~i). It is not difficult to see that ~]N will tend to 
f (x*)  = mina<~<b f ( x )  as N --+ co. Moreover, if f ( x )  has a unique global minimizer 
x* on [a, hi, then (~r ~ x* as N ~ co, where ~v is given by f (~v )  = r/N. The 
above discussion suggests taking 

--~ 2~V -- (r "~- r (32)  
r - r 

as an estimator for the skew rate 5. 
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4.2. M u l t i - S o l u t i o n s  

The Monte Carlo implementation technique in the last section can be extended to 
the case when the objective function f has multiple global minimizers. The search 
domain Dk at the k-th iteration can be decomposed into a union of several cuboids 
of dimension n: 

r k  

Ok = U D] ,  (33) 
j=l  

so that  each smaller cuboid D] can be treated individually as in the above subsec- 
tion. Usually we assume that  for each iteration k, the number rk is less than an 
integer m which is given in advance. 

5. Constrained and Discreat Minimizat ion  

Constrained nonconvex minimization problems arise from broad range of applica- 
tions. General speaking, solving a constrained minimization problem is much harder 
than solving an unconstrained problem. Integral global minimization technique us- 
ing a discontinuous penalty method to convert a constrained minimization problem 
to an unconstrained one without any constrained qualification requirements. We 
outline the main ideas of the discontinuous penalty method. 

5.1. Discontinuous Penalty  M e t h o d  

We use the discontinuous penalty method to solve a constrained problem: 

c* = ~i~ /(x),  (34) 

where S C X is the constrained set. 
The discontinuous penalty function associated with S is defined as follows. 

Definit ion.  A function p(x) on a metric space (X, d) is a penalty function associ- 
ated with a constraint set S C X if 

1. p is lower semicontinuous; 

2. p ( z ) = 0 i f z E S ;  

3. inf p(x) > 0, 
x~S~ 

where Sa = { u: d(~, S) </~ }, ~ > O, ~nd d(~, S) is the distance from ~ to the 
feasible set S defined by 

d(x ,S)  = in f{d(z , s ) :  s e S}. 
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R e m a r k .  In the above definition we do not require the continuity of p, unlike the 
traditional definition [20], [7]. 

R e m a r k .  It  is expected that  the penalty increases when the distance from a point 
x to the constraint set S increases. We replace the traditional property 

by condition 3. 

With a penalty function p, we examine a penalized unconstrained minimization 
problem associated with (34): 

~i~{f(~) + ~p(x)}, (35) 

where a (> 0) is a penalty parameter.  

D e f i n i t i o n .  A penalty function p for the constraint set S is exact for (34) if there 
is a real number (~0 > 0 such that  for each a > s0 we have 

~ { f ( ~ )  + ~;(~)} = ~i~f(x)  = c* (36) 

and 

{x E X :  f ( x )  + ~p(x) = c*} = {x E S :  f ( x )  = c*} = H*. (37) 

We now construct a class of discontinuous penalty functions for the constrained 
problem (34). Let 

0, x c s, 
ps(x,~)  = ~ + d(x), x ~ S, (3S) 

where 5 is a positive number and d(x) is a penalty-like function. 
For example, for the inequality-constraint set 

S = {x:  g~(x) _< 0, i = 1 , . . . , r } ,  

we can take 

d(x) = ~ II max(g~(~), 0)11 p or d(x) = m~xll max(g~(x), 0)LL p, 
i=1 

where p > 0. If gi, i ---- 1 , . . . ,  r, are continuous, then d is continuous. 

PROPOSITION 1 I f  f is continuous, and d is upper robust on 5, or f is upper robust 
and d is continuous on 5, then f + oLp is upper robust on 5 for every o~ > O. 

THEOREM 3 [32] The discontinuous penalty function (38) is exact. 
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R e m a r k .  No constraint qualification is required for the penalty function (38). 

R e m a r k .  If f is robust piecewise continuous with a robust part i t ion {S, So}, then 
for each c~ > 0 and 6 > 0 the penalized function f ( x ) +  o tps (x ,6 )  is a piecewise 
robust continuous function. 

A penalty algorithm is proposed as follows: 

S t e p  1 : Take co > m i n u e s f ( x ) ; r  1.0; 

Ho = { x : f ( x )  + o<op(x) <_ co }; 

S t e p  2 : Calculate the mean value 

cn+l - # (Hn)  [f(x)  + o~ap(x)]d#; (39) 
r ,  

S t e p  3 : Calculate the modified variance 

V a + l  - -  ( / ( x )  +  aP(X) - 

If va+l ~_ c, then n := n + 1 and a a + l  = aa  �9 fl, and go to Step 2; otherwise, go 
to Step 4; 

S t e p 4  : c* ~ c a + l ; H *  ~ H c . + l ; S t o p .  

The algorithm may  stop in a finite numbers of iterations, in which case we let 
cn+k = Ca and Ha+k = H a , k  = 1 , 2 , . . . .  

Applying the above algorithm with e = 0, we obtain a decreasing sequence 

cl _> c2 > " "  _> c,~ _> Ca+l _> "'" (40) 

and a sequence of sets 

H1 D H2 D . . .  D H~ D Ha+l  D - - . .  (41) 

THEOREM 4 [32] With this algorithm, we have 

lim ca = c* = ~ i ~  f ( x )  (42) 
a =-+ OO 

and 

lim Ha = N Ha = H*. (43) 
a ---~ OO 

k=l 
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5.2. R o b u s t i f i c a t i o n  o f  I n t e g e r  a n d  M i x e d  P r o g r a m m i n g  

A discrete or mixed minimization problem can be robustified to be a problem with 
a robust pieeewise continuous function over a robust set. The following example 
demonstrates the process. 

Example: Consider the following combinatorial  optimization problem. Let 

Z~ = {z = ( z l , . . . , z ' ~ ) :  z i is a nonnegative integer, i = 1 , . . . , n ) ,  

S be a finite subset of Z~_ and f : S --* R 1 a function defined on S. Let f ( z )  = 
f ( z l , . . . ,  z'~). The problem is to find the minimum value of f over S: 

and the set of min ima 

H* = {z E S :  f ( z )  = e*}. 

In this case, H* is nonempty. 

We now consider this problem in the space R ". The set S is not robust in this 
space. We define 

D = {x = ( x l , . . . , z n )  e R n : (Ix 1 + 0.5], . . ., [x n + 0.5]) E S} 

and 

F ( X )  : f ( [ x  1 "Jr 0.5] ,  . . . ,  Ix n 2~_ 0 .5]) ,  

where [a] denotes the integer part  of the real number a. The set D defined above 
is a union of n-dimensional cubes, which are robust in R ". For each real number  
c, the set {x :  F(x)  < c} is also a union of cubes (or the empty  set). Thus, D is a 
robust set and F is an upper robust function in R ". Let x* be a global minimizer 
of F over D, i.e., 

F(z*) = m i n F ( x ) .  
xED 

Then x* E int D (or one can find a point zl  in the same cube with x* such that  
Zl Eint D). Therefore, we obtain a robustification of this combinatorial  optimiza- 
tion problem. [] 

6. N u m e r i c a l  Tes t s  

The performance of a global minimization algorithm can only be ascertained by 
numerical computat ions on a variety of test problems. There are a lot of test 
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problems for global minimization available in the literature. We select some here 
and classify them as follows: 

(A) Unconstrained or box-constrained minimization. 
(C) Constrained minimization. 
(D) Discrete minimization, including integer and mixed programming. 
The problems selected here represent some well known test problems in global 

optimization community. The selection range from problems with two variables to 
problems with a hundred variables, from problems of differentiable objective func- 
tions to the problems of a objective function with infinite number of discontinuities; 
from problems with box constraints to problems with equality and inequality con- 
straints. We also select several discrete or mixed minimization problems. We hope 
that the selection is general enough to warrant our claim that the integral global 
optimization technique is powerful, flexible and efficient, and it is competitive with 
any other existing global optimization algorithms. 

All the test problems selected here are solved by packages INTGLOU and INT- 
GLOC, which are the implementations of the algorithms of integral global mini- 
mization. The softwares are compiled by MS-FORTRAN 5.1 and are running on 
MS-DOS environment. These test problems can be solved within a few seconds to 
a few minutes on an IBM 386/.25 personal computer with a math coprocessor. 

6.1. Uncons t r a ined  or Box Cons t ra ined  Prob lems  

A set of unconstrained or box constrained test problems are presented in this sub- 
section. We describe each test problem by the following: 

1. objective function 

2. Search domain (boxed constraints) 

3. Solution, including the minimum objective function value computed by the 
integral global minimization algorithm, the corresponding minimizers. 

4. Statistics: we list the number iterations, the number of function evaluations 
and current value of V1. 

The sources of the problems are also provided. Note that the integral global 
minimization algorithms do not use any start points. 

The stopping criterion employed for all the unconstrained problems selected here 
is the modified variance V1 = 1 • 10 -2~ 

P rob l em A.1. SoUaCE: [6]. 
OBJECTIVE FUNCTION: 

f ( z ) =  [ l + ( z l + x 2 + 1 )  2. ( 1 9 - 1 4 z l + 3 x ~ - 1 4 x 2 + 6 z l x 2 + 3 x 2 ) ] •  
[30 + (2xl - 3z2)2(18 - 32zl + 12z~ + 48z2 - 36zlx2 + 27z~)]. 

SEARCH DOMAIN: 
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. 

2. 

3. 

P r o b l e m  A.2. SOURCE: [6]. 
OBJECTIVE FUNCTION: 

f (~)  = 12x~ - 6.3x~ + ~ + 6~2(~2 - ~1) 

SEARCH DOMAIN: 

D = {(xl ,x2)  E R 2 : -10.0  _< zi <_ 10.0, 

SOLUTION: 

x* = (0.0,0.0) f* = 2.2497375 x 10 -13 

STATISTICS: 

1. 

2. 

3. 

D = { ( z l , z 2 )  c R  2 : -2 .0_<  zi <_ 2.0, i = 1 , 2 }  

SOLUTION: 

z* = (0 .0 , -1 .0)  f* = 3.0. 

STATISTICS: 

number of iterations: 19 

number of function evaluations: 1051 

current value of modified variance VI: 9.233 • 10 -21 

i =  1,2} 

number of iterations: 17 

number of function evaluations: 951 

current value of modified variance VI: 1.1543449 • 10 -21 

R e m a r k .  The objective function is so-called three-hump camel back function. 

P r o b l e m  A,3. SOURCE: [6]. 
OBJECTIVE FUNCTION: 

f (x )  = 4x~ - 2 . 1 ~  + ~x~ + x1~2 - 4 ~  + 4 ~ .  

SEARCH DOMAIN: 

D = { ( x l , x 2 )  E R 2 : - 2 . 5 < x i ~ 2 . 5 ,  i = 1 , 2 }  

SOLUTION: 

x* = (0.08984133, -0.71267531) and (-0.08993914, 0.7126753), f* = -1.031628. 

STATISTICS: 
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1. number  of iterations: 18 

2. number of function evaluations: 931 

3. current value of modified variance VI: 8.216884 x 10 -21 

R e m a r k .  The objective function is so-called the six hump camel back function. It  
has six minimizers, two maximizers and seven saddle points. 

P r o b l e m  A.4.  SOURCE: [8]. 
Objective Function: 

f(x) = (1 - 2x2 + c sin(4~rx2) - xl)  2 + (x2 - 0.5 sin(2~rxl)) 2, 

where c is a parameter  which can be varied to modify the number of extraneous 
sigularities in the function. Here, we take c = 0.05, 0.2, and 0.5. 

SEARCH DOMAIN: 

D = {(xl ,x2)  E R 2 : 0.0 < xl < 10.0, -10 .0  < x2 < 0.0} 

SOLUTION: The global min imum value of this problem is 0.0 for each c. The 
following table presents the numerical approximation of the global min imum value 
and the minimizers. 

] [I c = 0.05 r c = 0.2 ) c = 0.5 ) 

I x 1  I] 1.85130447 I 0.98250584 I 1.89738692 I 

! x2 [I -0.40208593 I -0.05484892 [ -0.30049412 I 

] f II 1.2122348• 10 -~2. 10 -3211 .7292806  �9 lO-aa [ 7.7683103.10-a2 I 

STATISTICS: 

1. 

2. 

3. 

P r o b l e m  A.5.  SOURCE: [6]. 
OBJECTIVE FUNCTION: 

number  of iterations: 22 

number of function evaluations: 1660 

current value of modified variance VI: 1.0411676 x 10 -21 

cos xl + 10. 

SEARCH DOMAIN: 

D = { ( x l , x 2 )  E / ~ 2 : - 5 . 0 _ < x l _ <  10.0, 0 . 0 < x 2 _ < 1 5 . 0 }  
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SOLUTION: The integral global algorithm find three global minimizers in this 
region: 

(-3.14159291,12.275030), (3.141579,2.274958), (9.424798,2.474921) 

with the global minimum value 

f* = 0.39788736. 

STATISTICS: 

1. number of iterations: 23 

2. number of function evaluations: 1267 

3. current value of modified variance VI: 1.0 • 10 -21 

P r o b l e m  A.6. SOURCE: [6] 
OBJECTIVE FUNCTION: Shekel's family (SQRIN) 

f ( x )  = - ( x  - ai)T(  - + c i '  
i=1 

where the parameters ai and ci are given by the following table: 

i ai ci 

1 4.0 4.0 4.0 4.0 0.1 
2 1.0 1.0 1.0 1.0 0.2 
3 8.0 8.0 8.0 8.0 0.2 
4 6.0 6.0 6.0 6.0 0.4 
5 3.0 7.0 3.0 7.0 0.4 

6 2.0 9.0 2.0 9.0 0.6 
7 5.0 5.0 3.0 3.0 0.3 

8 8.0 1.0 8.0 1.0 0.7 
0 6.0 2.0 6.0 2.0 0.5 

7.0 3.6 7.0 3.6 0.5 

SEARCH DOMAIN: 

D = { ( z l , . . . , x 4 )  C R 4 : 0.0 < zi < 10.0, i = 1 , . . . , 4 } .  

SOLUTIONS: 
SHEKEL 5: 

z* = (4.00003727, 4.00013375,4.00003730, 4.00013346), f* = -10.153200. 
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SHEKEL 7: 

x* = (4.00057280, 4.00069020, 3.99948997, 3.99960620), f* = -10.402941. 

SHEKEL 10: 

x* = (4.00074671, 4.00059326, 3.99966290, 3.99950981), f* = -10.536410. 

STATISTICS: SHEKEL 5 

1. number  of iterations: 41 

2. number  of function evaluations: 2453 

3. current value of modified variance VI: 1.7979744 x 10 -21 

SHEKEL 7 

1. number of iterations: 42 

2. number  of function evaluations: 3028 

3. current value of modified variance VI: 1.0 x 10 -~1 

SHEKEL 10 

1. number  of iterations: 41 

2. number  of function evaluations: 2735 

3. current value of modified variance VI: 1.0 x 10 -~1 

P r o b l e m  A7  SOURCE: [6] 
O b j e c t i v e  F u n c t i o n :  

f ( x )  = - ~ ci exp - a i j ( x j  - P i j )  2 . 
i=1  j----1 

where x = ( x l , . . . ,  x~), and the parameters  are given in the following tables: 

H A R T M 3 :  m = 4 ,  n = 3  

aij 

3.0 10.0 30.0 
0.1 10.0 35.0 
3.0 10.0 30.0 
0.1 10.0 35.0 

1.0 
1.2 
3.0 
3.2 

Pij 

0.3689 0.1170 0.2673 
0.4699 0.4387 0.7470 
0.1091 0.8732 0.5547 

0.03815 0.5743 0.8828 
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H A R T M 6 :  m = 4 ,  n = 6  

{ aij ci 

1 
2 
3 
4 

10.0 3.0 17.0 3.5 1.7 8.0 
0.05 10.0 17.0 0.1 8.0 14.0 
3.0 3.5 1.7 10.0 17.0 8.0 
17.0 8.0 0.05 10.0 0.1 14.0 

1.0 
1.2 
3.0 
3.2 

i Pij 

0.1312 0.1696 0.5569 0.0124 0.8283 0.5886 
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991 
0.2348 0.1451 0.3522 0.2883 0.3047 0.6650 
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381 

SOLUTIONS: 
HARTM 3 

x* = (0.11461478, 0.55564892, 0.85254688), f* = -3.8627821. 

HARTM 6 

a* = (0.20169, 0.15001,0.47687, 0.27533, 0.31165, 0.65730), f* 

STATISTICS: 
HARTM 3 

= -3.322368. 

1. number of iterations: 23 

2. number of function evaluations: 1150 

3. current value of modified variance VI: 1.0 x 10 -21 

HARTM 6 

1. number of iterations: 49 

2. number of function evaluations: 3345 

3. current value of modified variance VI: 1.0 • 10 -21 
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P r o b l e m  A.8.  SouRcE: [9] with an enlarged search domain. 
OBJECTIVE FUNCTION: 

f ( x )  = a i - - X l  2 
i=1 b i -I- b i x 3  --}- x 4  

where ai and bi, i = 1 , . . . ,  11 are given as follows: 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

ai 1/bi  

0.1957 0.25 
0.1947 0.5 
0.1735 1 
0.1600 2 
0.0844 4 
0.0627 6 
0.O456 8 
0.0342 i0 
0.0323 12 
0.0235 14 
0.0246 16 

SEARCH DOMAIN: 

D = { ( x l , . . . , x 4 )  E R 4 : - 0 . 3 _ < x i < _ 0 . 3 ,  i = 1 , . . . , 4 }  

SOLUTION: 

x* = (0.19282941, 0.19095407, 0.12315108, 0.13581648), f* = 3.0748802 • 10 -4.  

STATISTICS: 

1. number  of iterations: 54 

2. number of function evaluations: 7592 

3. current value of modified variance VI: 1.0 • 10 -21 

P r o b l e m  A.9.  SOURCE: [17] with an enlarged search domain. 
OBJECTIVE FUNCTION: 

81 

i= l  

where 

- + x 2 e x p  _ [zi  Yi 
L x~ j L z6 j ) 
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and 

z ~ = 4 . 0 §  i=1,2,...,81, 

) 1.2 J +52 .6exp  

SEARCH DOMAIN: 

SOLUTION: 

{ - 0.97 J j ,  i =  1 ,2 , . . . , 81 .  

1 2 0 < x 1 <  150, 3 0 < x 2 < 7 0 ,  4 < x 3 < 1 0 , ' [  
5_<x4_<15, 0 . 5 < x 5 < 4 ,  0 . 2 < x 6 < 2  f 

or 

f ( x ) =  max IR~I 
i----1,...,81 

with the same search domain. 
P r o b l e m  A.10. SouRcE: [14]. OBJECTIVE FUNCTION: 

i = l  i=1 i=1 

SEARCH DOMAIN: 

D = { ( x l , . . . , X s )  E R  s : 0 . 0 < x i <  1.0, i =  1 , . . . , 8 }  

P r o b l e m  A.11. SOURCE: [14]. 
OBJECTIVE FUNCTION: 

f* -- 1.6383836 • 10 -1~ 

STATISTICS: 

1. number of iterations: 77 

2. number of function evaluations: 5187 

3. current value of modified variance VI: 1.0 x 10 -21 

We can consider a minimization of a function 

81 

S(~) = ~ IR, I 
i---1 

xl = 130.89, x2 = 52.59, x3 = 6.73, x4 = 9.342, x5 = 1.2, x6 = 0.97, 
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n - 1  

f(x) = 7r sin2 7 r a i n {  ( ) +  E ( x i  - 1.0)211 + 10.0 sin2(Trxi+l)] + ( x , -  1.0) 2} 
i=1 

SEARCH DOMAIN: 

D = { ( x l , . . . , x , ~ ) E R  '~:-10.0_<xi_<10.0, i = l , . . . , n }  

SOLUTION: 

~* = (1 , . . . 1 )  F = o .  

The following tableau gives the number of iterations N~, the amount of function 
evaluation N], the function value f* and the current value of modified variance V1 
corresponding the cases of number of variables n = 5, 10, 20, 50, respectively. 

The stopping criterion for this problem is V1 < 10 -25. 

I n II 5 I 10 ] 20 [ 50 I 100 I 
I Ni ]l 52 I 93 I 172 I 380 I 863 I 
IN] II 2765 I 5276 I 12376 ] 49359 I 128483 ] 
[ f* [[ 1.076.10-13 I 6.43.10-1z I 1.65.10-12 I 3 .41 .10-1212 .90 .10  -12 ] 

I v1 II 4.12.10 - 2 6  18 .77 .10-2617 .07 .10-26  I 8.18 - 10-2619.71 .10-26 [ 

P r o b l e m  A.12. SouRcE: [14] with modification. 
OBJECTIVE FUNCTION: 

g(x) = sin2(31rxl) + ~ i = l  (x~ - 1.0)211.0 + sin2(37rxi+l)] + 

(x,~ - 1.0)211.0 + sin2(27rx,~)], f (z)  = g(x) + [g(~)] rt ' 

where [y] denote the integer part of y. Thus, the objective function f is diseontin- 
u o u s .  SEARCH DOMAIN: 

D = { ( X l , . . . , x n )  CR" : - 1 0 . 0 < x i <  10.0, i = l , . . . , n }  

SOLUTION: 

** = ( 1 . 0 , . . . 1 . 0 )  f*  = 0. 

The following tableau gives the number of iterations Ni, the amount of func- 
tion evaluation Ny, the minimum function value f* and the current values of the 
modified variance 1/1 corresponding cases of number of variables n = 5, 10, 20, 50, 
respectively. The stopping criterion for this problem is V1 < 10 -25. 
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I n  II 5 I lO I 20 I 50 I 
i N ,  II 56 I 101 I 186 I 412 I 
] N f  ]] 3208 ] 5996 I 12549 I 54734 ] 
[ f* II 5.838578.10-14 I 6.414436.10-13 I 1.180750.10-12 I 2.285634.10-12 [ 
[ V1 ]I 4.986358.10-2s I 5.835348 .10-26 I 5.241681.10-26 { 8.942764 .10-2r { 

P r o b l e m  A.13, SOURCE: [4] 
OBJECTIVE FUNCTION: 

f (x )  1 . o + E L l l x ~ l +  sgn sin( ,,-- ) - 0 . 5  , ~ # 0 ,  
= n ,=1 I~,1 

0, z = 0  
(44) 

SEARCH DOMAIN: 

D = {(Xl, . . . ,zn)  : -1 .0  < zi < 1.0, i = 1 , . . . , n}  

SOLUTION: 

�9 * = ( o , . . . o ) ,  f * = o .  

Remark .  The function has an infinite number of discontinuous hypersurfaces. 
Its unique global minimizer is at the origin where the objective function has a 
discontinuity of "the second kind." Since the restriction of the variable value that 
sine function can take, the function f takes the value zero when ~i~=1 Izi [In < 10 -9. 
The following tableau gives the data of this text problem. 

I n II 5 I 10 I 20 I 50 I 
I N~ II 7 7 1  128 I 226 I 711 1 
I Nf II 52031 10223 I ~5527 I 1057471 

6.2. Constra ined  Min imizat ion  Prob lems  

We present a set constrained problems in this subsection. We describe each test 
problem by the following format: 

1. Objective function. 

2. Constraints, including constrain functions and boxed constraints. 
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3. Solution, the minimum objective function value computed by the integral global 
minimization algorithm, the corresponding minimizers. 

4. Statistics, including the number of iterations, the number of function evalua- 
tions and the current value of modified variance Vz. 

The discontinuous penalty method presented in Section 5 is used to solve all the 
constrained problems in this subsection. 

Unless otherwise stated explicitly, the stopping criterion used in the programs for 
solving all numerical tests in this subsection is 1.0 • 10 -1~ 
P r o b l e m  C.1. SouRcE: [4]. 

OBJECTIVE FUNCTION: 

f (x )  = 100(x2 - z l )  2 + (1 - X l )  2 

CONSTRAINTS: 

h ( x ) = x ~ - z l + x 2 - 0 . 9 = 0 ,  - 1 . 0 _ < z l ,  x 2 < 1 . 0 .  

SOLUTION: 

x* = (0.965932,0.932907) and f* = 0.001162 

with 

h(x*) = 2.109617.10 -13. 

The penalty function 

p(x) = ~lh(x)l 18, ~ = 1000 

is used to solve this minimization problem. 
STATISTICS: 

1. 

2. 

3. 

P r o b l e m  C.2. SouacE: [8]. 
OBJECTIVE FUNCTION: 

f ( ~ )  = - ~ 1  - ~2 + ~3 

CONSTRAINTS: 

s i n ( 4 ~ x l )  - 2 s i n 2 ( 2 ~ 2 )  - 2 s i n 2 ( 2 ~ 3 )  _> 0, 

SOLUTION: 

x* = (4.75, 5.0,--5.0), and f* = -14.75. 

STATISTICS: 

number of iterations: 31; 

number of function evaluations: 2829; 

current value of modified variance Vl: 4.05785 • 10 -16. 

- 5  < z l ,  x 2 < 5 .  
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1. number of iterations: 49; 

2. number of function evaluations: 4440; 

3. current value of modified variance VI: 0. 

P r o b l e m  C.3. SOURCE: [38]. 
OBJECTIVE FUNCTION: 

f (x )  = - 2 x ~  - x l m 2  - 2 x 2 .  

CONSTRAINTS: 

z l + x 2 <  1, 1 . 5 Z l + Z ~ <  1.4, 

0.0 < Xl <_10.0, -10.0_< z2 _< 0.0. 

SOLUTION: 

x* = ( 7 . 6 , - l O ) ,  

STATISTICS: 

1. 

2. 

3. 

f* = -19.52. 

number of iterations: 43; 

number of function evaluations: 3914; 

current value of modified variance VI: 4.94434 x 10 -16 

R e m a r k .  This is a counterexample to Ritter's method [22]. The global minimizer 
will not be found by Ritter's method unless one happens to begin with (7.6,-10) 
as the first local optimum. 

P r o b l e m  C.4. SOURCE: [38]. 
OBJECTIVE FUNCTION: 

f ( x )  = - x ~  - x ~  - (x3 - 1) 2. 

CONSTRAINTS: 

xi + x2 - x3 <_ O, - z i  + z2 - z3 _< O, 12zl + 5z2 + 12x3 < 22.8, 

1 2 x i + 1 2 x 2 + 7 x 3 < 1 7 . 1 ,  - 6 x i + x 2 + x 3 _ <  1.9, 

- i 0 .0  < xm < i0.0, 

SOLUTION: 

z* = (3.42, 0, -3.42), 

STATISTICS: 

1. number of iterations: 74; 

0.0 _ x2 _ 10.0, 10.0 < x3 < 10.0. 

f* = -31.2328. 
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2. number of function evaluations: 8876; 

3. current value of modified variance VI: 4.48476 x 10 -16. 

R e m a r k .  This is a counterexample to Tuy's method [26]. A local optimum occurs 
at the vertex x ~ = (0, 0, 0) with f(x ~ = -1;  Tuy's method will produces an infinite 
cycling and the process does not terminate. 

P r o b l e m  C.5. SOURCE: [38]. 
OBJECTIVE FUNCTION: 

f ( x )  = - ( x l  - 1) 2 - x ~  - ( ~ 3  - 1)  2 

CONSTRAINTS: 

x l + z 2 - x s _ <  1, - x l + x 2 - x s _ < - l ,  

12Xl+5X2+12xs_<34.8 ,  1 2 X l + 1 2 x 2 + 7 x a <  17.1, 

- 6 x l + x 2 + x a _ < - 4 . 1 ,  0.0_<zl,  x2, xs, _<5.0. 

SOLUTION: 

x* = (1, 0, 0), f* = - 1 .  

STATISTICS: 

1. number of iterations: 37; 

2. number of function evaluations: 2043; 

3. current value of modified variance VI: 7.66012 x 10 -16. 

P r o b l e m  C.6. SOURCE: [12]. 
OBJECTIVE FUNCTION: 

f ( ~ )  = (x~ + x2 + ~3) - (~1 + ~ - ~3)~. 

CONSTRAINTS: 

( z 1 - z 2 - 1 . 2 )  2+x2_<4.4 ,  x l + x 2 + x s _ < 6 . 5 ,  

1 . 4 < x l  <5.0 ,  1 . 6 < x 2 < 5 . 0 ,  1 .8_<x3<5.0 .  

SOLUTION: 

x* = (1.4, 1.809502, 1.8), f* = 4.576804. 

STATISTICS: 

1. number of iterations: 39; 

2. number of function evaluations: 2111; 
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3. current value of modified variance VI: 8.17440 • 10 -16. 

P r o b l e m  C.7. SOURCE: [10]. 
OBJECTIVE FUNCTION: 

where 

30zl, 0 < zl  < 300, 
f l ( z l )  = 31xl, 300 <~ Xl < 400, 

28x2, 0 ~ x 2 < 1 0 0 ,  
f~(z2) = 29x2, 100 < x2 < 200, 

30x2, 200 ~ x2 < 1000. 

xl = 300 

X 2 --  

X5 --  

2O0 

340 ~ x4 < 420, 

CONSTRAINTS: 

0.90798x~ cos(1.47588), z3x4 cos(1.48577- z 6 ) +  131.078 
131.078 

0"90798Z~cos(1.47588) ' zax4 cos(1.48477+ x6) + 131.078 
131.078 

x3z4 �9 ~t 0.90798z~ sin(1.47588), 
13-1.078 sln(l.48477 + x6) + 131.078 

x3x4 sin(1.48477- x6) + 0"90798x2 sin 1 47588 
131.078 131.078 3 ( �9 ) = 0 ,  
0 ~ xl < 400, 0 < x2 ~ 1000, 340 ~ X 3 < 420, 

- 1 0 0 0 ~ x 5 <  1000, 0 < z 6 ~ 0 . 5 2 3 6 .  

SOLUTION: 

x* = (202.99666,100.0,383.07092,419.99999,-10.90767,0.073148) 

f* = 8889.8999 

STATISTICS: 

1. number of iterations: 56; 

2. number of function evaluations: 5893; 

3. current value of modified variance VI: 6.18995 • 10 -16. 

R e m a r k .  The objective of this test problem is a discontinuous robust function 
with four nonlinear equality constraints. We take x3 and x6 as independent vari- 
ables. Then xl,  x2, x4 and x5 are functions of x3 and x6. Thus, in addition to the 
box constraints on these independent variables, there are 8 more nonlinear inequal- 
ity constraints. The discontinuous penalty function is applied to these inequality 
constraints. 
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P r o b l e m  C.8. SOURCE: [21]. 
OBJECTIVE FUNCTION: 

f (x )  = o.0204xlx4(.1 + ~2 + ~3) + o .0187x~3(x l  + 1.57~2 + ~4) + 

0 . 0 6 0 7 x 1 ~ . ~ ( ~  + ~ + x~) + 0 . 0 4 3 7 . ~ x ~ ( . ~  + 1.57.~ + .~), 

subject to the inequality constraints: 

xi > O, i = 1 , . . . , 6 ,  

gl(X) = X l X 2 X 3 x 4 X 5 X 6  - -  2070 > 0, 

g~(x) = 1 - 0 00062~1~4~(x~ + ~ + ~) 
-O.O058x2x3x~(Xl + 1.57x2 + x4) _> 0 

The problem was solved by Ballard, Jelink and Schinzinger [3]. The minimization 
process starts with a feasible point: 

xl = 5.54, x2 = 4.4, x3 = 12.02, 

x4 = 11.82, x5 = 0.702, x6 = 0.852 

and leads to a solution 

xl = 5.3336, x2 = 4.6585, x3 = 10.4365, 

x4 = 12.0840, x5 = 0.7525, x6 = 0.8781. 

The objective function value at the solution is f* = 135.1155. Price [21] resolved 
the problem with the controlled random search method and suggested that it be 
used as a test problem of constrained global minimization. 

The following solution is obtained by the integral global minimization with the 
discontinuous penalty technique in a large search region D: 

D =  {x E R 6:0.0<_xi<_20.0, i = 1 , . . . , 6 } .  

and 

xl = 5.41411876, x2 = 4.71604587, x3 = 10.34384982, 

x4 = 11.88555219, x~ = 0.74910661, x6 = 0.88027699, 

f* = 135.09767268. 

STATISTICS: 

1. number of iterations: 599; 

2. number of function evaluations: 87475; 

3. current value of modified variance VI: 3.03333 x 10 -16. 
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Remark .  The solution x* is very closed to the boundary of constraints: 

gl(x*) = 9.9685.10 -s, and g2(x*) = 1.5982.10 -~~ 

P r o b l e m  C.9. Source: [13]. 
OBJECTIVE FUNCTION: 

f (x)  = 0.7854xlx~(3.3333x~ + 14.9334z3 - 43.0934) - 1.5080xl(x~ + x~) 
+7.4770(~ + ~ )  + 0 . 7 8 5 4 ( ~  + ~ ) .  

~ONSTRAINTS: 

xix~x3 >_ 27, xlx~x] >_ 397.5, 

x2x3x~/~ > 1.93, x2~3~r ___ 1.93, 

/ r ~  12 1 , / [ ~ 1  10 +16.91.106 0 : : ~ !  +157.5.106 VL J X2X3 Vt 
x] _~ 1100, x~ 

J 

x2x3 <_ 40, 5 < Xl/X2 _~ 12, 1.5x6 + 1.9 _ x4, 

1 .1xT+1.9~x~,  2 . 6 ~ x l  ~3.6, 0 . 7 ~ x 2 ~ 0 . 7 ,  

17~x3_<28, 7 . 3 < x 4 ~ 8 . 3 ,  7 . 3 ~ z 5 ~ 8 . 3 ,  

2.9 ~ x6 _< 3.9, 5.0_< x7 _< 5.5. 

SOLUTION: 

x* = (3.5, 0.7, 17.0, 7.30, 7.72, 3.35, 5.29), f* = 2994.42. 

STATISTICS 

1. number of iterations: 128; 

2. number of function evaluations: 8839; 

3. current value of modified variance 1/1:2.22273 • 10 -16. 

P r o b l e m  C.10. SouRcE: [23]. 
OBJECTIVE FUNCTION: 

f (x )  = 1.10471x~x2 + O.04811x3x4(14 + x2) 

CONSTRAINTS: 

g l ( x )  = x4  - x l  >__ 0 ,  

g2(z) 136~176 2 t l t ~  +t~/10 G > 0, 
--  10 6 -[- X / x ~ . b ( x l . b x 3 )  2 - -  

g 3 ( x )  = 3 - 5 .04  ~,~i >_ O, 

< 850, 
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g 4 ( * )  = 4.013 4 ~ ; t l  - ~ . / ~ - ~  _ 
1.96xlo~ ~' ~ ' - ' ~  28 V aJ  > 0.006, 

g5 = 0.25 2.1952 > 0, ~-7~-~ - 

tl  = 6000/(1.414xlz2), E = x3z3107/4, a = 4z3z3106, 

t2 = 3000(14 + z2/2)~/z~ + (zl + z3)2/Y, 

0.125_<xl <20.0 ,  0.0 _< z2 _< 20.0, 0.0_<x3_<20.0, 0.0 _< x4 _< 20.0. 

SOLUTION: 

x* = (0.15321, 16.93611, 3.00768, 0.32293), and f* = 1.88446227. 

STATISTICS: 

1. number of iterations: 159; 

2. number of function evaluations: 23202; 

3. current value of modified variance VI: 5.81420 • 10 -11. 

R e m a r k .  A solution was reported in [23] with f* = 2.38116. Here, we find a 
different feasible solution with significantly better objective function value. 

6.3. D i s c r e t e  a n d  M i x e d  M i n i m i z a t i o n  P r o b l e m s  

Robustification technique enables us to treat discrete and mixed programming prob- 
lems as continuous ones. In this subsection, we present several discrete or mixed 
test problems. The integral global approach with discontinuous penalty method is 
applied to solve these problems. The format of the descriptions of the problems is 
the same as the previous subsection. 
P r o b l e m  D.1.  SOURCE: [4]. 

OBJECTIVE FUNCTION: SOURCE: [6] with discrete constraints. 

f (x)= [ l + ( x l + x 2 + 1 )  2. ( 1 9 - 1 4 x l + 3 z ~ - 1 4 z 2 + 6 z l x 2 + 3 z 2 ) ] •  
[30 + (2xl - 3z2)2(18 - 32zl + 12z~ + 48z2 - 36xxx2 + 27x~)]. 

CONSTRAINTS: 

D = {(Xl, x2):  Xl, X 2 ---- 0.001i, i = - 2 0 0 0 , - 1 9 9 9 , . . . ,  1999, 2000}. 

SOLUTION: 

x*  = ( 0 . 0 0 0 , - 1 . 0 0 0 )  Y* = 3.o. 

STATISTICS : 
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1. number of iterations: 9; 

2. number of function evaluations: 291; 

3. current value of modified variance VI: 0. 

P r o b l e m  D.2.  SouacE:  [1], [27]. 
OBJECTIVE FUNCTION:  

n 

Z ai 
i=1 Xi 

where n = 3, al = 33.7539, a2 = 1.4430 and aa = 1.3885. 
CONSTRAINT:  

f i  xi = M, l ~x i  ~ Ni, x~ isinteger, i= l , . . . ,n ,  
i=1 

where N1 = 16, N2 = 20, N3 = 28, and M = 24. 
SOLUTION: 

x * = ( 1 6 , 4 , 4 )  and f* =2.8150.  

STATISTICS: 

1. number of iterations: 5; 

2. number of function evaluations: 171; 

3. current value of modified variance VI: 0. 

P r o b l e m  D.3.  So uacE  [16] 
OBJECTIVE FUNCTION:  

f(x) = (Xl -- 3) 2 -{- (X2 --  2) 2 -~- (X3 "-}- 4) 2. 

CONSTRAINTS:  

~ - x 2 + ~ + 3 > 0 . 0 ,  gl  = Xl T x22 T x30'5 --  10 ~_ 0.0,  g2 = 4.166 3.921 -- 

g 3 = - 4 x l + x ~ + x ~  3'5 + 1 2  > 0.0, x a > 0 ,  xl andx2  are integers. 

SOLUTION: 

x* = (3, 3, 0.0) 

STATISTICS: 

1. 

2. 

and f* = 17.0. 

number of iterations: 23; 

number of function evaluations: 1228; 
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3. current value of modified variance VI: 2.48615 x 10 -16. 

R e m a r k .  It was reported in [16] that  the problem has minimizer x* = (4, 3, 0.598) 
with the function value f* = 23.141604. In Loh's dissertation [15], the constraints 
have been changed to: gi_>0.1, i =  1, 2, 3, wheregl  = x l + 2 x : + x 3  ~  and 
fli = gi, i = 2, 3. Let us name this new problem as D3A. A solution of D3A given 
in [15] was x* = (4, 3, 0.631) with the function value f* = 23.45. 

The solution of D3A obtained by the integral global minimization algorithm is 
x* = (4, 3, 0.1) with the function value f* = 18.81. The following is the related 
statistics: 

STATISTICS OF D3A: 

1. number of iterations: 29; 

2. number of function evaluations: 1891; 

3. current value of modified variance VI: 5.95563 • 10 -16. 

P r o b l e m  D . 4 .  SOURCE: [5]. 
OBJECTIVE FUNCTION: 

f ( x )  = - - X 3  - -  X 4  - -  X S .  

CONSTRAINTS: 

20Xl + 30x2 + X3 -~- 2X4 "~- 2X5 <~ 180, 30xl + 20x2 + 2x3 + x4.+ 2x5 _~ 150, 

- 6 0 x l + x a _ < 0 ,  - 7 5 x 2 + x 4 _ < 0 ,  0 < x i < _ l ,  i = 1 , 2 ,  

0 ~ _ x i ~ _ 7 5 ,  i = 3 , 4 , 5 ,  x i i n t e ge r  i = 1 , . . . , 5 .  

SOLUTION: 

x* = (1, 1, 24, 52, 0) f* = - 7 6 .  

STATISTICS: 

1. number of iterations: 14; 

2. number of function evaluations: 1486; 

3. current value of modified variance VI: O. 

R e m a r k .  There are at least six alternative global minimizers. After 1131 function 
evaluations, the global minimizer is found. The variance does not equal zero until 
1486 function evaluations. 

P r o b l e m  D . 5 .  SOURCE: [5]. 
OBJECTIVE FUNCTION: 

f ( x )  = x l z2xa  + z l z 4 z ~  + z2z4x6 + x6XTxs + x2xsxT.  
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CONSTRAINTS: 

2xl + 2x4 + 8xs _> 12, l l x l  + 7x4 + 13x6 ~ 41, 6x2 + 9x4x6 + 5x7 _> 60, 

3 x ~ + 5 x s + 7 x s _ > 4 2 ,  6x2xT + 9x3 + 5xs >_ 53, 

4x3x7 + xs >_13, 2 x l + 4 x 2 + 7 x 4 + 3 x s + x T < 6 9 ,  

9xlxs + 6x3x5 + 4x3x7 <_ 47, 12x~ + 8x~xs + 2x3x6 <_ 73i 

x 3 + 4 x s + 2 x 6 + 9 x s _ _ 3 1 ,  xi__7, i = 1 , 3 , 4 , 6 , 8 ,  

x i ~ 1 5 ,  i = 2 , 5 , 7 ,  xiinteger i = 1 , . . . , 8 .  

SOLUTION: 

x* = (5,4 ,1 ,1 ,6 ,3 ,2 ,0)  f* = 110. 

R e m a r k .  This is the most difficult one among the five test problems presented in 
[5]. After 919 function evaluations, the global minimizer is found. The variance 
does not equal to zero until 1370 function evaluations. 

STATISTICS: 

1. number of iterations: 15; 

2. number of function evaluations: 1370; 

3. current value of modified variance VI: 0. 

P r o b l e m  D.6. SouRcE: [10]. 
OBJECTIVE FUNCTION: 

f (x )  = 5.3578547x~ + 0.835689xlx5 + 37.293239xl - 40792.141. 

CONSTRAINTS: 

0 _< 85.334407+ 0.0056858x2x5 + 0.0006262xlx4 - 0.0022053x3x5 < 92, 

90 < 80.51249 + 0.0071317x2x~ + 0.0029955xlx2 + 0.0021813x32 < 110, 

20 <_ 9.300961 + 0.0047026x3x5 + 0.0012547xlx3 + 0.0019085x3x4 _< 25, 

78 < Xl < 102, 23 < x2 < 45, xl,x2 are integers, 27 < xi < 45, i = 3,4,5. 

SOLUTION: 

x* = (78, 33, 29.99525603,45.0, 36.77581291) f* = -30665.53867176. 

STATISTICS: 

1. number of iterations: 98; 

2. number of function evaluations: 11849; 

3. current value of modified variance VI: 5.55430 x 10 -16. 

R e m a r k .  In [5], the problem was restated as a mixed programming problem. 
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7. C o n c l u s i o n s  

The fundamental theory of integral global optimization is based on robust analysis 
and Q-measure theory. The theory provides a set of necessary and sufficient condi- 
tions to characterize global minimizers and suggests an intuitive approach to locate 
the global minimizers. The theory is mathematically sound and is well received in 
mathematics community. 

The detailed accounts of the implementation of integral global approach for solv- 
ing unconstrained minimization problems is presented. The discontinuous penalty 
method and robustification technique provide an unified approach to solve uncon- 
strained problems, constrained problems, continuous, discrete or mixed problems. 
Most remarkably, the discontinuous penalty method is exact, and there is no con- 
strained qualification requirements for the method. The collection of numerical 
tests presented here illustrate the effectiveness of this unified approach. 

There are many different algorithms available to solve unconstrained, constrained 
or discrete, mixed optimization problems. Some of them, based on gradient meth- 
ods or others, may have better performance than the integral approach for some 
problems with special structures. However, to the best of our knowledge, there is no 
method which is both flexible enough to handle discontinuous problems or discrete 
problems in a unified fashion, and very efficient. We are confident that the inte- 
gral global optimization is a valuable addition to ever growing global optimization 
techniques. 
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